

ASSESSMENT AND REMEDIATION OF MERCURY CONTAMINATED SITES

PRESENTER: LINDSAY WHALIN

Collaborators: Chris Eckley US EPA Region 10

Cindy Gilmour Smithsonian Environmental Research Center

Sarah Janssen USGS Upper Midwest Water Science Center

Todd P Luxton US EPA Office of Research & Development

Carrie Austin SF Bay Water Board

Paul M Randall US EPA Office of Research & Development

Gold Mining

Mercury Mining

Chlor alkali

Primary Source Sites for SF Bay Region Waterbodies

Images Library of Congress, Sierra Fund, UC Davis, Lumicrest

FISH Hg LINKED TO MINING

- Higher fish [Hg] associated w/watersheds more historical mining
- Only waterbodies
 downstream of Hg
 associated mines
 NOT impaired
 remediated or not
 actually connected

Site Assessment: Source attribution using stable isotopes

What are stable isotopes?

Forms of the same element that contain equal numbers of protons but different numbers of neutrons and as a result have different atomic masses

Mercury Isotopes:

7 stable isotopes with range in mass from 196 to 204 amu

Mass dependent fractionation:

Lighter isotopes react faster and become enriched in the products

Site Assessment: Source attribution using stable isotopes

- Hg stable isotope analysis has provided insights into different sources of Hg—requires end-members (and minimal post-source transformation)
- Mines significant source downstream

Donovan et al, 2013

Yin et al, 2013

Jannsen

8²⁰²Hg

Source control has been effective, but enough?

Uncertainties may be significant, different:

- Types of sites (3 mines)
- Remediation
 strategies
- Fish sampled
- Temporal scales
- Downstream
 mitigation needed
- Improved source control needed

Site Assessment: Source/Site characterization

Delineate extent of contamination

- High measurement density resolves soil heterogeneity, limited sampling \$
- Reduce cost/effort
- **Recommendations for quality data:**
 - Site/Source-specific reference materials, analysis times
 - Aggregate measurements (ISM)
 - Reliable limit 2xmdl (~15mg/kg)
 - · Lab comparison with HF digestion near action levels (or minimal false negatives

Images: Golder Associates & Eckley et al, 2020

Site Assessment: Risk Assessment

X-Ray Absorption Fine Structure

Selective Sequential Extraction

& Thermal Desorption

- Speciation/Chemical Extractions
- Reduce cost/effort of cleanup
- Identify environmentally available Hg (EA-Hg potentially harmful/methylatable)
- · Support risk assessment
- Target "harmful" Hg rather than "locked" Hg
- SSE recommendation after Bloom, FO-F3 (~F4)

OTarget EA-Hg Target Remedial Method

Site Assessment: Pathways of release—flux to water

Releases are a concern due to the potential for downstream methylation & bioaccumulation

- Stormflow flux >>> baseflow flux
- Annual loads dominated by a few large events
- Mobilization from erosion of particles/sediment entrainment

Site Assessment: Pathways of release—flux to water

- Positive relationship between THg and total suspended solids (TSS).
- Most regression slopes not significantly different.
- Most intercepts were significantly different and were correlated with the distance downstream from the contaminated source area.

• To sieve or not to sieve? landslide erosion o Individua grains Dissolved and suspended load Bedload terrace deposit point bar 220 00000 3 00 Go Saltation Traction point bar ZONE OF EROSION ZONE OF DEPOSITION ZONE OF TRANSPORT · 020 · 0 0 00 do o p do o ob a to 8 deposition conveyor belt

Figure 2. Zones of erosion, transport, and deposition, and the river channel as conveyor belt for sediment, (Reprinted from Kondolf 1994, with kind permission of Elsevier Science-NL.)

[Hg]_{aq} necessary to exceed SF Bay Basin Plan Fish Criteria

WILDLIFE PROTECTION FISH CRITERIA

0.00006 to 0.015ug/L

Small fish criteria = 0.03 mg/kg

Assumptions:

- MeHg/HgT 1% to 50%
- Herbivorous fish, trophic level 2
- Biomagnification range 2 to 10

HUMAN HEALTH FISH CRITERIA

0.000004 to 0.0005ug/L

Large fish criteria= 0.2 mg/kg

Assumptions:

- MeHg/HgT 1% to 50%
- Herbivorous fish, trophic level 3 to 4
- Biomagnification range 2 to 10

MeHg/HgT range: Coastal = Black et al; ES&T 2009; SF Bay Delta = Choe et. al. Limnol. Oceanogr. 2004; Tidal Marsh= Zhang et. al. ES&T 2014

Site Assessment: Pathways of release—flux to air

- Relative magnitude of surface-air versus water flux depends on hydrological/meteorological conditions.
- Annual fluxes to the air can be 50-100 kg/year from some contaminated sites.
- Soil Hg speciation (along with several environmental parameters) affect surface-air fluxes.

Site Remediation: Improve Containment

Vapor Barrier

Site Remediation: Sequester environmentally available Hg

Soil Amendments

Other options:

- Soil-washing
- Solidification/stabilization
- Thermal treatment
- Electrochemical/kinetic recovery

- Bioremediation/biotreatment
- Phytoremediation/stabilization
- Chelating agents

Permeable Reactive Barrier

Remediated Ground Water Permeable Reactive Barrier Contamination Source

Conclusions:

We need to and can optimize Hg source control by:

- Using stable isotope fractionation to identify sources of contamination
- Improving site assessment:
 - Resolve spatial heterogeneity with increased sample density, XRF
 - Identify EA-Hg forms/speciation that are mobile, labile, &/or toxic with speciation/SSE
- Improving site remediation:
 - Prioritize/Target environmentally available-Hg
 - Implement enhanced remedial methods

Next Steps:

- Novel approaches to addressing contaminated sites have been identified at the laboratory and test plot scale;
- However, more examples of large-scale applications are needed to encourage broader adoption of these methods – SF Bay Water Board is implementing several currently

THANK YOU!

LWhalin@waterboards.ca.gov

