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Introduction:

 Hg methylation occurs in the sediment & water column of lakes

He methylation: Sediment > > Water Column

» But MeHg produced in the water-column may be more
available for uptake into the base of the foodweb

e MeHg demethylation: important to contextualize the net
amount of MeHg produced in the water column & sediment
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Introduction:

» Highest MeHg production just below the oxic/anoxic boundary

e Seasonal lake stratification affects the zones of MeHg production

 Management strategies can be aimed at reducing an anoxic
hypolimnion
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Study Objectives

1) Identify relative importance of MeHg sources

2) Identify how changes in lake stratification affect
methylation/demethylation in sediment & water

Study Location:

¥ Lake Nacimiento
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Littoral sediments
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Methods: Isotope Addition Solution

--Spike solutions purged with UHP Nitrogen for 1-hour prior to addition to water/sediment--
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Methods: Isotope Addition Solution

* Pre-equilibration of Hg spike affects methylation rates
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Results: Seasonal D.O., THg & MeHg
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Results: Water-Column Methylation/Demethylation
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Results: Sediment Methylation
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Results: Sediment Methylation

Water-level fluctuation
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Results: Sediment Demethylation
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Summary: Methylation & Demethylation
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Water: higher in anoxic water
Sediment: higher in littoral sediment

Similar magnitude of rates in water &
sediment

Demethylation

Water demethylation (under dark
conditions) much lower than in
sediment.

Highest demethylation in profundal
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Model: Scaled MeHg Sources

MeHgt = Km » Kdm i Hgiz+ * (1 . e‘-kdm#t)

_ Dispersion«|MeHg| _
Load = Dispersion Length t=100 days

Hypolimnion

Sources of Hypolimnion MeHg
Water column: 41%

Sediment flux: 50%

Other: 9%

44,600 g




Conclusions:

1) Sediment & water-column methylation contribute similar amounts
MeHg to the water of Lake Nacimiento

Important variables:
» Bioavailable pools of inorganic Hg

» lake bathymetry
» Climate
» reservoir water level management

2) Remediation goals aimed at reducing MeHg in fish may require
actions targeting sediment & water column processes

Important variables:
» Relationship of hypolimnetic MeHg mass to biotic exposure

» Uptake of MeHg into the base of the foodweb
» Biota foraging behavior




Questions:
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