Delta Mercury Control Program

Program Update Data Analysis Discussion

Water Boards

Agenda

2

- DMCP Progress to Date
- Background of TMDL Linkage Data Analysis
- Current Data Availability
- Discussion
 - Data grouping options

Status

- CEQA Scoping Meeting 24 February 2021
 - 4 entities submitted written comments
 - Offset Program (varying positions)
 - Support for only using LMB in linkage
 - Support tribal outreach and engagement
 - Support stakeholder engagement
 - ADA document availability
 - Support using models for linkage & attainability of allocations and objectives
- Phase 1 Control Studies
 - Board staff to review all control studies
 - Independent Scientific Review Panel
 - Part 1 finalized
 - Part 2 (tidal wetlands, open water) delayed

CEQA Scoping

- AB52 Tribal Consultation (Completed)
 Public CEQA Scoping Meeting (Completed)
 Public CEQA Scoping Comment Period (Completed)

Control Program and TMDL Staff Report Development

Scientific Peer Review (Health and Safety Code § 57004)

Release Substitute Environmental Documentation

Public Comment Period

Regional Board Hearing and Adoption

State Board Hearing and Approval

Office of Administrative Law Approval

USEPA Approval (Notice of Determination)

Ongoing Public, Tribal, and Agency Coordination

Original Linkage Sample Locations

- Only LMB data were available for the same sampling period and locations as aqueous MeHg data
- Subareas with inadequate or no data
 - 2 North Yolo Bypass
 - 3 South Yolo Bypass
 - 8 Marsh Creek

LMB Hg Implementation Goal = 0.24 mg/kg

Aqueous MeHg Implementation Goal = 0.06 ng/L

Original Linkage Data

7

Sample

Aq [MeHg]unf
Fish [Hg]fillet
Sample Size
1
5
10

After Data Merger

Monthly Averages of Aqueous [MeHg] & Black Bass [Hg] from Data Merge

Sample

- Aq [MeHg]unf
- Largemouth Bass [Hg]fillet
- Smallmouth Bass [Hg]fillet
- Spotted Bass [Hg]fillet

Sample Size

- = 1
- **1**0
- **5**0 **1**00

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

LMB Hg Conc. Standardized to 350mm

	Std. 350mm	
Year	LMB [Hg]	n
2016	0.216	22
2017	0.289	33
2018	0.357	33
2019	0.335	33
Wt. Avg	0.306	121

After Data Merger

Monthly Averages of Aqueous [MeHg] & Black Bass [Hg] from Data Merge

Sample

- Aq [MeHg]unf
- Largemouth Bass [Hg]fillet
- Smallmouth Bass [Hg]fillet
- Spotted Bass [Hg]fillet

Sample Size

- 1
- 10
- 50 50

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flowchart Discussion Questions

One Data Point per Subarea (original linkage) vs Multiple Data Points per Subarea (alternative)

Considering our data set is not in a typical or ideal format (i.e., a measured fish Hg conc. does not have a corresponding aqueous MeHg conc.)...

What's the optimal way to pair aqueous data with fish data?

Should we use data from the original linkage (2000) through 2019 or is there a reason to limit data to other years (e.g., limitations of pairing sparse aqueous data with fish data)?

Are there any other options we should consider?