Grizzly Creek Hydraulic Mine Biochar Pilot Project

Carrie Monohan, PhD, The Sierra Fund
Madison Brandt, CSU Chico
Nick Graham, The Sierra Fund
Debbie Page-Dumroese, PhD, Rocky Mountain Research Station
Hydraulic Mine Database

Database currently is comprised of publicly and privately owned lands totaling:
- 456 hydraulic Mines or Mine Features
- 17,671 Acres
Hydraulic Mine Site Characteristics

- Active Erosional Areas
- Drain Tunnels
- Ditches
- Ponds
- Gullies / Headcuts
- Multiple Outflow Points
Hiller 2
Diggins Creek

Gage 3
Humbug Creek

Road 1
Humbug Creek

Humbug Creek and Diggins Creek

Photos taken by Dr. C. Monohan 3/14/2012
Humbug Creek Watershed Assessment

Annual Sediment Load

Annual Mercury Load
Approximately 31,000 acre planning area, with 19,300 acres of National Forest System

63 Hydraulic Mines
1,199 acres

TN Forest Service project to enhance watershed health by improving:

- Forest health and resilience to changing climatic conditions
- Reduce surface and ladder fuels
- Protect and/or improve wildlife habitat
- Maintain and improve watershed and soils conditions
What is Biochar?

• Different feedstocks - Woody Biomass
• Biochar pyrolysis temperature and organic material determine the binding sites present
• low pyrolysis temperature (300-400°C) combined with organic material high in lignin creates more effective biochar compared to other temperatures and feedstocks
• **Lab Tests: three experiments**
 – biochar manufactured using Ponderosa Pine at 400C, by Phoenix Energy in Merced

• **Storm water Sampling-background**

• **Field Tests: Planned 2022**
BioChar Lab Tests

Experiment 1) Storm Water Columns

- Water Collected from Malakoff Diggins
- Passed through decomposed granite, with 0, 2, 5% BioChar
- Collected Turbidity, THg and f-Hg
BioChar Lab Tests
Experiment 1) Storm Water Columns

Hydraulic Mine Debris collected from Blue Point Mine
DI water passed through debris with 0, 2, 5% BioChar
Collected Turbidity, THg and f-Hg
BioChar Lab Tests

Experiment 2) Sediment Sample Columns

BioChar Lab Tests

Experiment 3) Sediment Sample Trays

- Hydraulic Mine Debris collected from Blue Point Mine
- DI water passed through debris with 0, 2, 5% BioChar
- Samples were sieved and 50% fines and 50% greater than fines
- Collected Turbidity, THg and f-Hg
BioChar Lab Tests
Experiment 3) Sediment Sample Trays

BioChar Lab Tests
Experiment 3) Sediment Sample Trays

Field Mesocosm THg ~ NTU Relationship

Biochar Application
- 0% (R² = 0.56)
- 2% (R² = 0.65)
- 5% (R² = 0.54)
Grizzly Creek Diggins Pilot Project

Grizzly Creek Diggins Hydraulic Mine: Project Effectiveness Monitoring Plan

- Grizzly Creek Diggins Hydraulic Mine Extent
- Grizzly Creek Diggins Remediation Area

Map showing the extent and remediation area of the Grizzly Creek Diggins Hydraulic Mine.
Grizzly Creek Diggins
Storm Water Sampling

Grizzly Creek Diggins Hydraulic Mine: Project Effectiveness Monitoring Plan

- Tahoe National Forest Ownership
- Grizzly Creek Diggins Hydraulic Mine Extent
- Grizzly Creek Diggins Remediation Area
- Stream Lines
- Grizzly Creek Diggins Surface Water Sampling Locations

[Map and images of the area]
The CERCLA pre-screening criteria indicates that a discharge from the site for mercury would need to be ≥1 lbs/24hrs to trigger a CERCLA investigation. The contributing loads we calculated are 10,000 times below the trigger for CERCLA for mercury.
Grizzly Creek Diggins Remediation Design

- 50 acres of fuels reduction
- Land recontouring to reduce erosion rates
- Stabilize two headcuts
- Stabilize a debris control dam
- Biochar and chips as soil amendments
4’x10’ test plots will be constructed within the “Barren Area” of the Grizzly Creek Diggins Hydraulic Mine pit.
Biochar source testing and documentation is necessary for any soil amendment to document the material is “clean” and that there aren’t any contaminants which may affect the sampling and testing.

FPL will conduct this Biochar testing.

- Samples were sent to FPL over the summer and they are analyzing it for a range of characteristics.
Grizzly Creek Diggins
Biochar Test Plots
Grizzly Creek Diggins
Biochar Test Plots

TREATMENTS

(1) Biochar will be hand applied over the test plot surface.

(2) Biochar will be hand applied and then wood chips applied on top of the biochar.

(3) Biochar will be applied to the soil surface and subsequently mixed into the surface 10 cm of soil using a shovel or other appropriate tool.

(4) Control, no treatment applied.

Funneled Surface Flow Sampling Locations
- Total Mercury (THg)
- Filtered-Total Mercury (f-THg)
- Total Suspended Solids (TSS)
- Turbidity (NTU)
Grizzly Creek Diggins
Biochar Test Plots, Runoff Sampling
2022 and 2023

- T₀-In; Sample collection at time of runoff from the inlet port to the housing unit to monitor the incoming water quality to the simulated rainfall unit.
- T₁-Out; Sample collection at time of runoff from the outflow of the test plot
- T₃₀-Out; Sample collection at 30 minutes following runoff
- T₆₀-Out; Sample collection at 60 minutes following runoff

Conduct Tests in 2022 and in 2023
Grizzly Creek Diggins
Soil and Revegetation Sampling

- Revegetate with a seed mix of native grasses and forbs from the local area
- At 1, 3, 6, and 12 months after seedling ground cover measurements using the Cover Management Assistant will be taken (Steinfeld et al. 2011)
 - The Cover Management Assistant will also be used to determine bare soil, biochar, and wood chip cover, and small-scale erosion.

- After 12 months:
 - A 20 cm² plot will be excavated to extract whole root systems for an estimate of belowground biomass.
 - 2 soil cores (2.5x10 cm corer) will be extracted from each treatment plot to determine soil C and N using a LECO CN analyzer (LECO Corp., St. Joseph, MI).
 - Soil pH will be determined on a 2:1 (water:soil) slurry.
 - Soil OM content will be determined by loss-on-ignition at 350°C after 8 h.
 - Soil ped will be collected to conduct a slake test to determine the stability of soil aggregates in water.
 - An undisturbed core from each replicate will be collected to determine soil water holding capacity and pore size distribution using the WP4C water potential equipment (Meter Group, Pullman, WA).

- In one replicate of each soil treatment, soil temperature (Onset Computer Corp., Bourne, MA) and moisture (ECH₂O probes; Meter Group, Pullman, WA) probes will be installed at a depth of 10 cm for abiotic measures every 4 hr.

- To measure CO₂ flux from the soil surface, open PVC collars will be permanently installed in each study plot. Soil CO₂ measurements using the LiCor 8100A automated soil gas flux system (LiCore Biosciences, Lincoln, NE) will conducted each time soil cover is assessed.
Grizzly Creek Diggins
Terrestrial-LiDAR (T-LiDAR)

T-LiDAR: Erosion Rates before and after remediation
USGS Terrestrial LiDAR at other Sites

(A) Humbug Creek / South Yuba River Study Site
- Cliff (erosion area)
- Over-steepened slope (erosion area)
- Colluvial slope (deposition area)
- South Yuba River

(B) March 17, 2011
- Destabilized slope above near-vertical fluvial scarp
- Coarse colluvium derived from destabilized slope above the near-vertical fluvial scarp
- Mercury-contaminated alluvium (mining debris)
- Near-vertical fluvial scarp

(C) Horizontal change in meters from October 2012 to January 2013
- Over-steepened slope below cliff
- Erosion in broad gully

(D) Vertical change in meters from October 2012 to January 2013
- Erosional furrow
- Colluvial slope below the over-steepened slope
- Depositional mound
- High-water mark

(E) Horizontal change from Jan. 2011 to May 2011
- Cutbank crest
- Perpendicular to cutbank surface
- Horizontal change from May 2011 to Feb. 2013
- Erosion near the cutbank crest caused deposition on the lower half of the cutbank, which buried the near-vertical fluvial scarp
- Slope erosion of about 0.9 meters
Next Steps?

- Grant Extension for US Endowment Funding
- Sampling and Analysis Plan / Work Plan Update
- Summer 2022 test plot construction and testing
- Apply for Implementation funding from SNC
Contact Us!

The Sierra Fund
204 Providence Mine Road, Suite 214
Nevada City, CA 95959
www.sierrafund.org

Carrie.Monohan@SierraFund.org