Evaluation of manganese oxidemodified activated carbon (MOMAC) for treatment of mercury contaminated sediments

Edwin Rivas Meraz May 17, 2022

Manganese Oxide Affect the Fate of Contaminants

- Mn oxides ubiquitous in environmental systems
 - Present as Mn(II), (III), or (IV)
 - Different surface areas/ reactivities
- Strong oxidation and sorption properties influence fate of
 - Organic pollutants, As, Hg/ MeHg*, etc.

Table 1.	Important	Mn	oxide	minera	ls
1 0010 11	important	14111	OALUE	munere	1.3

Mineral	Chemical formula		
Pyrolusite	MnO ₂		
Ramsdellite	MnO ₂		
Nsutite	Mn(O,OH)2		
Hollandite	$Ba_x(Mn^{4+},Mn^{3+})_8O_{16}$		
Cryptomelane	$K_x(Mn^{4+},Mn^{3+})_8O_{16}$		
Manjiroite	$Na_x(Mn^{4+},Mn^{3+})_8O_{16}$		
Coronadite	$Pb_x(Mn^{4+},Mn^{3+})_8O_{16}$		
Romanechite	Ba.66(Mn4+,Mn3+)5O10-1.34H2O		
Todorokite	(Ca,Na,K)x(Mn4+,Mn3+)6O12-3.5H2O		
Lithiophorite	$LiAl_2(Mn_2^{4+}Mn^{3+})O_6(OH)_6$		
Chalcophanite	ZnMn ₃ O ₇ ·3H ₂ O		
Birnessite	(Na,Ca)Mn7O14.2.8H2O		
Vernadite	MnO ₂ ·nH ₂ O		
Manganite	MnOOH		
Groutite	MnOOH		
Feitknechtite	MnOOH		
Hausmannite	$Mn^{2+}Mn_{2}^{3+}O_{4}$		
Bixbyite	Mn ₂ O ₃		
Pyrochroite	Mn(OH)2		
Manganosite	MnO	Post 1990	

Toxicity of Mercury and Methylmercury

- Hg is a globally spread contaminant
- Hg(II) microbially converted to MeHg under *anaerobic, reducing* conditions
 - Sulfate-reducers, iron-reducers
- MeHg is a powerful neurotoxin that bioaccumulates and magnifies
- Low sediment/ water concentrations can lead to high fish concentrations

MnOx as a Sediment Amendment Technology

- Low-cost remediation strategy
- Targets source of MeHg production
- For Hg-contaminated sediments
- MnOx acts as redox buffer to disfavor Hg-methylation pathways

Terminal Electron Accepting Processes

kidizing	O ₂ → H ₂ O	Aerobic respiration
ô ↑	$NO_3^- \rightarrow N_2$	Denitrification
£	Mn ^(IV) O ₂ → Mn ^(II)	Dissimilatory manganese reduction
Ĩ	Fe ^(III) OOH → Fe ^(II)	Dissimilatory iron reduction
J ↓	SO ₄ ²⁻ → H ₂ S	Sulfate reduction
Reducir	HCO ₃ - → CH₄	Methanogenesis
_		Mercury Methylation

Adapted from Dimitri Vlassopoulos

Activated Carbon as a Sediment Amendment Technology

- Thermal or chemical activation of C sources
- High surface area sorbent useful for:
 - Organic compounds
 - Metals and metalloids
- Variety of modifiable surfaces

Calgon Carbon

Combining Remediation Strategies

- MnOx disfavors MeHg production pathways through redox buffering
- Activated carbon (AC) serves as sorbent to bind Hg and MeHg to sediment

Combining Remediation Strategies

- MnOx disfavors MeHg production pathways through redox buffering
- Activated carbon (AC) serves as sorbent to bind Hg and MeHg to sediment

Sediment incubation experiments

- Guadalupe reservoir bottom sediment
- $5\%_{dry wt} Mn(IV)Ox$ amendment added
- $1\%_{dry wt}$ AC added
- 5_{Mn} : $\hat{1}_{AC}$ mix
- 0-20d and **0-5d**
- Methylation spike in 0-5d

Both

Incubations with Physical Mixes

• MnOx buffered redox potential (ORP) and minimized porewater MeHg

Seelos, M. *et al.* Evaluation of Manganese Oxide Amendments for Mercury Remediation in Contaminated Aquatic Sediments. *ACS ES&T Eng* (2021) doi:10.1021/acsestengg.1c00267.

Incubations with Physical Mixes

- MnOx buffered redox potential (ORP) and minimized porewater MeHg
- Sharp initial decrease in pH
 - Oxidation of Fe(II)S to FeOOH

Seelos, M. *et al.* Evaluation of Manganese Oxide Amendments for Mercury Remediation in Contaminated Aquatic Sediments. *ACS ES&T Eng* (2021) doi:10.1021/acsestengg.1c00267.

Incubations with Physical Mixes

- MnOx buffered redox potential (ORP) and minimized porewater MeHg
- Sharp initial decrease in pH
 - Oxidation of Fe(II)S to FeOOH
- Rapid reductive dissolution of Mn(IV)

Seelos, M. *et al.* Evaluation of Manganese Oxide Amendments for Mercury Remediation in Contaminated Aquatic Sediments. *ACS ES&T Eng* (2021) doi:10.1021/acsestengg.1c00267.

Manganese Oxide Modified Activated Carbon

- Adhering MnOx onto AC combines strategies
 - Practical implementation
 - Opens avenues to optimize
 - Redox buffering capacity
 - Reductive transformation
 - Longevity

Compare MOMAC against synthetic MnOx

MOMAC Synthesis Overview

 $2 \text{ KMnO}_4 + 3 \text{ MnCl}_2 \cdot 4\text{H}_2\text{O} + 4 \text{ NaOH} \rightarrow 5 \text{ MnO}_2 + 2 \text{ KCl} + 4 \text{ NaCl} + 6 \text{ H}_2\text{O}$

3. $\frac{\text{Dry at}}{55 \, ^{\circ}\text{C}}$

1. $MnCl_2 \cdot 4H_2O \pm AC$ \int_{24}^{24} $Mn^{II}(\pm AC) + KMn^{VII}O_4 + NaOH$

2. Wash 3X (CaCl₂) and rinse 3X (MQ water)

Mno

Evaluating MOMAC Products

- MOMAC products underwent characterization to determine
 - Total Mn in product (HHCl digestions)
 - Surface area (BET)
 - Dispersion of Mn (SEM/ STEM)
 - MnOx species (XAS)
 - Mn oxidation states (XPS)
- Assess performance through batch screening experiments

Characterization Method	Purpose	
BET	Measure surface area of AC and compare to MOMAC treatments	
EM-EDS	Capture images of individual AC and MOMAC grains and compare to verify presence of MnOx on AC surface	
XPS	Determine average oxidation state of MnOx in sample Assess changes in AC functional groups (XPS)	
XAS	Identify bulk MnOx oxidation state and chemical species	
XRD	Identify distinct crystalline mineral phases	
Acid digestions (HHCl)	Quantify mass of Mn on surface of AC	

MOMAC Mn Content

• MnOx and MOMAC • 40 digested in 0.1 M hydroxylamine Mn Conc (g_{Mn}/g_{MOMAC}) hydrochloride in 0.01 HNO₃ 10 _

Low MOMAC Medium MOMAC High MOMAC Synthetic MnOx

Surface Area Analysis (BET)

- Clean/ degas at 55 °C with N_2 overnight prior to analysis
- Surface area (SA) decreases with increasing loadings

Is the Mn adhered to AC surface or a separate phase?

Electron Microscopy

- Scanning and transmission electron microscopy (SEM/ STEM)
- Supplemented with energy dispersive X-ray spectroscopy (EDS)

Electron Microscopy

- Scanning and transmission electron microscopy (SEM/ **STEM**)
- Supplemented with energy dispersive X-ray spectroscopy (EDS)
- What Mn oxidation states and species are associated with MOMAC?

Ο Κα1

X-Ray Absorption Spectroscopy

Bulk Mn species determined with linear combination fits using reference spectra

- Synthetic MnOx >80% Mn^{IV} and Mn^{III, IV}
- MOMAC consists of 39-45% manganite (Mn^{III}OOH) and 19-25% hausmannite (Mn^{II},Mn^{III}₂O₄)
- Similar distribution of Mn species among MOMAC samples

X-ray Photoelectron Spectroscopy (XPS)

- Quantify Mn *oxidation states* on surface (1-10 um)
- Fit with binding energies from literature $(\pm 0.1 \text{ eV})$

X-ray Photoelectron Spectroscopy

- Synthetic MnOx >80% Mn^{IV}
- MOMAC Mn2p3 XPS consisted of
 - 48-53% Mn(IV)
 - 14-17% Mn(III)
 - 33-35% Mn(II)
- O1s XPS showed higher OHfractions (25-27%) in MOMAC compared to MnOx (~18%)
- Similar distribution of Mn oxidation states among MOMAC samples

X-Ray Diffraction

- Synthetic MnOx is amorphous
- Presence of MnOOH (feitknechtite) in some MOMAC products
- Common C reflection from AC (graphite)

X-Ray Diffraction

- Synthetic MnOx is amorphous
- Presence of MnOOH (feitknechtite) in some MOMAC products
- Common C reflection from AC (graphite)

How does redox buffering compare between MOMAC and MnOx?

MOMAC pH and ORP Batch Screening

- Uncontaminated sediment from ORNL East Fork Poplar Creek streambed
- Artificial creek water (ACW) (~40 g)
- 5%_{dry wt} amendment added (~0.3 g)
- With and without sediment
- Kept on rotator in N₂-filled glovebox
- Monitor change in pH and ORP over a 2-week period

Screening Results

- Generalized additive model (GAM) fit used to observe trends
- Not normalized for mass of Mn
- ORP was higher in Mn-treated sediments compared to control
- Lower pH associated with MnOx
- Similar redox buffering among all MOMAC samples

Eh-pH Diagrams

MOMAC Evaluation Summary

- Characterization (XAS, XPS, XRD) show that
 - Synthetic MnOx is >80% Mn(IV)
 - MOMAC contains mixed-valent Mn phases
 - 39-53% Mn(IV)
 - 30-60% Mn(III) as Mn^{III}OOH and (Mn^{II},Mn₂^{III})O₄ (hausmannite)
 - Evidence for adsorbed Mn(II) on AC
- Mn species, oxidation state distribution, and redox buffering similar across MOMAC loadings (2-12 wt%)
- Redox behavior of MOMAC distinct from synthetic MnOx

MOMAC Evaluation Summary

- Characterization (XAS, XPS, XRD) show that
 - Synthetic MnOx is >80% Mn(IV)
 - MOMAC contains mixed-valent Mn phases
 - 39-53% Mn(IV)
 - 30-60% Mn(III) as Mn^{III}OOH and (Mn^{II}, Mn₂^{III})O₄ (hausmannite)
 - Evidence for adsorbed Mn(II) on AC
- Mn species, oxidation state distribution, and redox buffering similar across MOMAC loadings (2-12 wt%)
- Redox behavior of MOMAC distinct from synthetic MnOx

What causes the differences in the Mn species observed in synthetic MnOx compared with precipitation in the presence of AC?

Mn(II) autocatalyzes reductive transformation

• Mn(II) adsorbed onto AC during synthesis may cause reductive transformation of Mn(IV)

How might the differences in Mn species influence longevity as a sediment amendment?

Implications for Hg Remediation and Future Steps

MOMAC may be favorable over MnOx when applied to sediments

- Formation of intermediate Mn phase, favored at higher pH, can improve longevity
- AC can sorb reduced Mn(II), slowing reduction of Mn(IV)

Implications for Hg Remediation and Future Steps

- MOMAC may be favorable over MnOx when applied to sediments
 - Formation of intermediate Mn phase, favored at higher pH, can improve longevity
 - AC can sorb reduced Mn(II), slowing reduction of Mn(IV)
- Re-do screening normalized for mass of Mn
- Vary environmental system chemistry Evaluate MOMAC in an environmentally representative experimental design

Acknowledgements

